Tracing the evolution of bending knowledge, bending machines, bender tooling

0 امتیاز
3 بازدید

If you were to read a collection of tube bending articles written at various times over the last three decades, you might be surprised by how much bending technology has changed, especially within the last 20 years. Benders have advanced, new features have been developed, and bending knowledge has improved and spread.

 

To get a sense of how much the industry has advanced, consider two people doing two different things in the early 1990s. One is a tube bender technician working for an aircraft parts manufacturer. He’s well-versed in bending technology and bending machine and knows the combinations of tubing alloys, tooling sets, lubricants, and bender settings that result in tight-radius, repeatable bends. The other owns a pickup truck, and he’s changing the spark plugs. The truck is so big and has so much room to spare under the hood that he sits on the fender with his legs inside the engine compartment. He rests his feet on the wheel well as he works.

 

What do these two activities have to do with each other? Everything.

 

A Tale of 1D Bends in Two Industries

The aircraft industry has always been one of innovation. From the first flight in 1903, the technology it used to build aircraft was almost unrecognizable a mere 50 years later. Wooden frames covered in cloth and internal combustion engines had been replaced by aluminum airframes, aluminum skins, and jet-powered engines. The first flights were measured in seconds for time and feet for distance; five decades later, jets were flying for hours and hundreds of miles. Always space- and weight-conscious, aircraft companies led the way in reducing component size and weight. In tube bending or pipe bending machine, this means tighter bending radii and thinner walls. By the 1990s, it wasn’t uncommon for a tubular aircraft part to have a bending radius equal to the tube’s diameter, known as a 1D bend.

 

Back then, the automobile industry wasn’t as weight-conscious as it is now, and most vehicles were bigger than they really needed to be. The corporate average fuel economy (CAFE) legislation, which mandated the fuel efficiency for passenger cars and light trucks, didn’t change much in the1990s. After the initial target, 17.2 miles per gallon (MPG) for two-wheel-drive trucks and 15.8 MPG for four-wheel-drive trucks in 1979, they climbed to 20.7 and 19.1 by 1991. After that they rose slowly, just 1.4 MPG over the next 15 years. Gasoline was little more than $1 per gallon throughout much of the 1990s; consumers were hardly clamoring for fuel efficiency, so automobile manufactures didn’t have much incentive to reduce vehicle weight or size. In the early ‘90s most automotive applications used centerline radii larger than 1.5D and straight lengths between bends long enough for a standard 2D clamp and insert. Exhaust systems were big and cumbersome, so engine compartments were large to accommodate them.

 

The automotive industry at the time hadn’t started the big push to lighten cars and make them more fuel-efficient. Exhaust tubing was 0.060 to 0.080 inch thick, and in the ‘90s, some considered 0.060 in. to be thin wall.

 

Reducing Straight Lengths, Eliminating Welds. At that time, 1D bending was limited to elbows, or single bends, which were welded to straight sections to produce complete components—a time-consuming way to make a part.

 

In the early to mid-1990s the straights between bends shortened to less than 2D. Stack benders become the coveted machines of the time. The early stack machines were limited to either two or three tools: The so-called two-stack and three-stack machines with shearing machine. The latest generation of machines is more advanced still. They have a specific stack height but can accommodate as many tools as can fit onto the stack.

سوال شده 29 مهر 1400 در دارویی توسط ffuutty100 (120 امتیاز)

پاسخ شما

نام شما برای نمایش - اختیاری
حریم شخصی : آدرس ایمیل شما محفوظ میماند و برای استفاده های تجاری و تبلیغاتی به کار نمی رود
...